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Abstract
Systematic implementations of density functional calculations of magnetic
materials, based on atomic orbitals basis sets, are scarce. We have implemented
in one such code the ability to compute non-collinear arrangements of the spin
moments in the GGA approximation, including spiral structures. We have also
made a thorough study of the degree of accuracy of the energy with the size
of the basis and the extent of the orbitals. We have tested our results for the
different phases of bulk iron as well as for small clusters of this element. We
specifically show how the relative stability of the different competing states
changes with the degree of completeness of the basis, and present the minimal
set which provides reliable results.

(Some figures in this article are in colour only in the electronic version)

Molecular dynamics packages based on density functional theory (DFT) [1] represent a
specially useful set of tools in the theoretical analysis of materials. Most approaches use
plane waves as a basis set, which allows a great degree of accuracy provided the number
of plane waves is large enough, and use all the electrons in the atom to describe core and
valence states. However, these approximations are numerically very expensive and do not
scale linearly with the number of atoms. Other approaches, such as SIESTA, implement
the tight-binding philosophy [2], using norm-conserving pseudopotentials [3], to integrate
away core energy levels, and very flexible basis sets (BS) made up of numerical atomic-like
wavefunctions to handle valence electrons. Assessment of the degree of reliability of those BS
might be essential, since competing would-be ground states may in some instances have small
energy differences. Such analyses have already been performed for selected molecules and
solids [4, 5]. Those studies show how both the number of wavefunctions (WF) used as well as
their extent are variational parameters, providing therefore a path for systematic improvements
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of the accuracy of a simulation [4]. A similar study for magnetic elements or materials seems
to be highly desirable, since they have their own peculiarities and, in particular, are usually
tougher to simulate. We have performed an exhaustive study of the degree of accuracy of the
basis for iron in most of its bulk phases as well as for small clusters. We find that SIESTA
provides a highly accurate description of the systems we have scrutinized, provided that a
sizeable number of extended orbitals is used.

In order to simulate all the magnetic phases of iron we have implemented in SIESTA the
possibility to cope with non-collinear commensurate spin structures in the GGA approximation,
since non-collinear LDA, already included in this package, fails to provide adequate ground
states and lattice constants of a number of magnetic transition metals. Due to the fact that
the energy functional f (n̂, �∇n̂) is only known for collinear magnets, it is necessary to rotate
the density matrix n̂ at every point �r to the collinear reference frame, where it is diagonal. In
this case we have also to deal with the gradient, so that there are two possibilities previous
to the calculation of the XC energy and potential: (1) we can diagonalize the density matrix,
n̂ → n̂d = Û †n̂Û , and then calculate the gradient of it, �∇n̂d, or (2) we can rotate both the
density matrix and its gradient:

n̂, �∇n̂ → n̂d, Û
†( �∇n̂)Û (1)

and then select only the diagonal matrix elements of the gradient-density matrix. The second
approach was previously used by Sandratskii and co-workers [6]. We have verified analytically
that these two approaches are identical to linear order in gradients. We have also implemented
them in the code and obtained the same results in both cases.

We have included the possibility to simulate non-commensurate spiral structures of pitch
vector �q [7, 8]. To do so we have used the generalized Bloch theorem [7], so that our
wavefunction has the following form:

ψ̂�k,�q =
∑
�R,µ

e−i�k· �Rµφµ(�r − �Rµ)Û †
z (�q · �r)Û †

y (θ)

(
c�k,µ,↑
c�k,µ,↓

)
(2)

where �Rµ = �R − �dµ ( �dµ goes to atoms in the same unit cell) and Û are rotation matrices, with
�q · �r and θ the azimuthal and polar angles, respectively.

Choice of pseudopotentials and integration grids. SIESTA includes norm-conserving
pseudopotentials [3] optimized so that their local part is smooth [2]. We have used for iron
the pseudopotential proposed by Izquierdo and co-workers [9], generated from the atomic
configuration [Ar]3d74s1, with core radii for 4s, 4p, 3d and 4f orbitals set equal to 2.00 au and
the radius for the partial-core to 0.7 au.

Since the energy of the different states need not shift rigidly when increasing accuracy
and, moreover, competing ground states for (fcc) iron have energy differences as tiny as 2–
3 meV, we decided to set the number of k points, the grid cutoff (maximum kinetic energy
of the plane waves that can be represented in the real-space integration grid without aliasing)
and the electronic temperature to match an accuracy of about 1 meV. Figure 1 shows typical
results for the convergence of the free energy of bcc ferromagnetic iron as a function of those
parameters. We find then that we need up to 4000 k points, 700 Ryd (which corresponds to
about 50.000 points in the real space integration grid) and a temperature smaller than 300 K
to meet the desired accuracy.

Choice of basis set. SIESTA allows for a large flexibility in the use of BS of WF which
describe valence electrons. For each species of atom, one may specify one shell of s, p, d
and f orbitals (or not). Within each shell, one may choose how many WF having the required
angular symmetry are needed. A single-zeta basis (SZ) is equivalent to choosing just one WF.
Completion of the basis leads to double-zeta and triple-zeta bases (DZ, TZ). In addition, one
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Figure 1. Total free energy of bcc ferromagnetic iron as a function of (a) number of k points in
half the Brillouin zone (with a grid cutoff of 400 Ryd (27.000 points)) and (b) grid cutoff (with
4000 k points in half the Brillouin zone). (c) Energy relative to the case T ≈ 0 and (d) number
of iterations needed to achieve convergence as a function of the electronic temperature, calculated
with 4000 k points and a grid cutoff of 400 Ryd. An optimized DZ basis was used.
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Figure 2. (a) Evolution of the free energy of the three most stable states of iron as a function of the
size of the BS. AF = antiferromagnetic, HS = ferromagnetic high spin and FM = ferromagnetic.
(b) Cohesive energy curves of those same three states for the two minima found using the BSD.
The discontinuous curves correspond to radii of 6 au and the continuous to 10 au. The calculations
have been performed using the GGA approximation.

may polarize an orbital (P), which means adding WF which correspond to one higher angular
momentum unit [2]. Using more WF is equivalent to filling up the Hilbert space and provides
a better variational estimate of the ground state. The minimum basis required to accommodate
the eight valence electrons of iron would be SZ for both s and d orbitals, which provide a total
of 6 WF per spin.

We have minimized a few BS ranging from SZ–SZ–SZ (9 WF) to TZTP–TZTP–TZTP
(72 WF). Figure 2(a) shows the convergence of the energy, calculated using GGA, for the three
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Figure 3. Free energy and magnetic moment of the ground and lowest excited states of bulk
iron as predicted by LDA approximation, using (a) BSD and (b) BST, as a function of the
atomic volume. PM = paramagnetic, AF = antiferromagnetic, LS = ferromagnetic low-spin,
HS = ferromagnetic high-spin, SS = spin spiral and FM = ferromagnetic.

most stable states of bulk iron, e.g. bcc ferromagnetic, fcc ferromagnetic high-spin and fcc
antiferromagnetic as a function of the number of orbitals used in the BS. Notice that at least
30 WF are needed to achieve converged energy differences among the three states.

Radii of basis orbitals. We have paid special attention to the minimization of two bases:
BS DZP–SZ–DZ (BSD, 18 WF) and TZ–TZ–TZ (BST, 27 WF), where we have used a grid
software program to look for local minima of the energy as a function of the radii of the first zeta
of s, p and d orbitals. For the BSD basis we obtain a first local minimum for somewhat confined
radii of about 6 au and a deeper one for radii of about 10 au. Figure 2(b) shows that extended
radii improve both the energy and the lattice constant substantially. For instance, the lattice
constant a0 of the bcc ferromagnetic state obtained using BSD in the GGA approximation, as
predicted by the first minimum, is 2.90 Å, while the second one provides a better estimate,
a0 = 2.88 Å. In contrast, the energy landscape for the BST basis is very flat for radii s, p and
d from 6 to 10 au. Such a result was expected, since completion of the basis should lead to
weaker dependences on cutoff radii.

Results for iron in the LDA. We find that a DZP BS predicts erroneous orderings of the
ground and first excited states. Figure 3(a) shows that the ferromagnetic bcc state is more
stable that the paramagnetic fcc one. Figure 3(b) shows that usage of a more complete BS
corrects such a double error. We find then that it is necessary to use at least a BST in order to
obtain good predictions of the different physical magnitudes. The lattice constant, magnetic
moment and bulk modulus of ferromagnetic bcc iron are found to be 2.76 Å, 2.08 µB and
2.68 Mbar with such a BST, which compare extremely well with the best all-electron plane-
wave calculations [10]. Moreover, the lattice constant for paramagnetic fcc, 3.38 Å, is also
very similar to the all-electron estimate of 3.375 Å, while the energy difference between both
states is somewhat underestimated (55 versus about 70–80 meV) [10].

We turn now to the predictions for the spiral state. Tsunoda found that fcc iron stabilized
in the form of nanometre-sized pellets inside a Cu matrix, with a lattice constant of 3.577 Å and
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Figure 4. Free energy and magnetic moment of the ground and lowest excited states of bulk iron
as predicted by the GGA approximation, using (a) BSD and (b) BST as a function of the atomic
volume.

a spiral spin ordering of pitch �q0 = 2π/a × (0.12, 0, 1) [11]. We scan the energy as
function of pitch vector along the �X and XW directions, where we find two minima
�q1 = 2π/a × (0, 0, 0.6) (S1) and �q2 = 2π/a × (0.2, 0, 1) (S2); this last one being very
close to �q0. The energy curves for lattice constants equal or larger than 3.58 Å only have the �q1

minimum. The second minimum appears when we decrease a at or below 3.54 Å, becoming
lowest in energy at a ≈ 3.50 Å.

Results for iron in GGA. DZP basis sets also provide poor results in the GGA
approximation, even though the relative stability of the lowest energy states is correct now,
see figure 4. We find that the relative position of the energy curves of the fcc states change
significantly when we increase the size of the basis from BSD to BST. We have therefore
further increased the size of the BS to obtain more accurate results: we have included more
polarization orbitals of p, d and f symmetry up to 72 WF, and have found that the energy
of the three curves is essentially converged (see figure 2) for the BST basis. We obtain an
equilibrium lattice constant, magnetic moment and bulk modulus of 2.85 Å, 2.31 µB and
1.83 Mbar, respectively, for the ground state, which compare reasonably well with former
all-electron or ultrasoft-pseudopotentials-based plane wave calculations [12, 6, 13].

The results for spiral structures in the GGA approximation for lattice constants ranging
from 3.47 to 3.56 Å are summarized in figure 5. It can be seen that the free energy curves
change rather more again when we increase the size of the basis, since the shape of the energy
parabolae as a function of atomic volume also change significantly (see figure 4). For the
BST, the ferromagnetic high-spin state has a considerably high energy and there is a clear
asymmetric double-well structure with activation barriers of at least 7 meV. We find that the S2
state has already clearly developed when a = 3.52 Å, but the ground state is S1 down to lattice
constants of 3.47 Å. We predict that the most stable fcc state has a spiral spin arrangement and
a lattice constant of 3.56 Å, very close to the experimental value 3.577 Å [11] (see figure 4).

Marsman and Hafner [13] have also performed a thorough study of the spiral structures of
fcc lattices with tetrahedric, orthorhombic and monoclinic distortions using the non-collinear
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Figure 5. Free energy and magnetic moment as a function of pitch vector �q of the spiral state for
different lattice constants ranging from 3.48 to 3.61 Å for (a) BSD and (b) BST.

Table 1. Bond lengths a (Å), binding energy per atom Eb (eV/atom) and total magnetic moment
M (µB) for iron clusters of up to five atoms calculated with a BST and the GGA.

a (Å) B (eV Å−1) M (µB)

Fe2 2.02 1.51 6.00
Fe3 D∞h 2.28 1.72 5.62
Fe3 C3v 2.27 1.88 10.00
Fe4 C4v 2.30 2.21 14.00
Fe4 Td 1, 2 ↔ 3, 4 2.27 2.31 14.00

1 ↔ 2, 3 ↔ 4 2.65
Fe5 D3h 1 ↔ 2, 3 2 ↔ 3 2.43 2.58 17.07

1, 2, 3 ↔ 4, 5 2.37

GGA. In the undistorted case they found the same results we have obtained using the non-
collinear LDA: their absolute minimum corresponds to a spiral state S2, but its equilibrium
lattice constant, a = 3.49 Å, is much smaller than the experimental one. On the contrary, we
find that the most stable fcc state is a S1 spiral with equilibrium lattice constant a = 3.56 Å,
much closer to experiments. They also found that the equilibrium constant of their (metastable)
S1 state was 3.51 Å.

Finally, in order to test the transferability of our parameters, we have also simulated
clusters with a number of atoms of iron ranging from 2 to 5, using the non-collinear GGA and
a BST. Our results compare very well with previous theoretical calculations [16, 15, 9, 17, 14],
and even improve upon them when comparisons are made with the experimental values found
for the Fe2 cluster [18]. Our calculations are shown in table 1.

To summarize, we have performed a thorough study of the diverse phases of iron using a
DFT code based on localized wavefunctions. We have therefore:

(1) determined the minimal basis set of optimized wave functions required to obtain reliable
results,

(2) implemented in the code the non-collinear GGA and the ability to compute
uncommensurate spin spiral arrangements and
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(3) found that the most stable fcc state has a lattice constant of 3.56 Å and a spiral arrangement
of spins of pitch vector �q1 = 2π/a × (0, 0, 0.6).
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